TEKNOLOGI RNA INTERFERENCE (RNAi) SEBAGAI INOVASI PENGENDALIAN OPT RAMAH LINGKUNGAN

Penulis

Welmy Soumena , Muhammad Sarjan , Muhammad taufik Fauzi , Pending Dadih Permana

Diterbitkan:

2025-12-29

Terbitan:

Vol 1 No 3 (2025): JOURNAL OF MULTIDISCIPLINARY SCIENCE AND NATURAL RESOURCE MANAGEMENT

Kata Kunci:

RNA interference (RNAi), bioteknologi, pengendalian OPT, gene silencing, tanaman transgenik, SIGS, pertanian berkelanjutan

Artikel

Cara Mengutip

Soumena, W., Sarjan, M., Fauzi, M. taufik, & Permana, P. D. (2025). TEKNOLOGI RNA INTERFERENCE (RNAi) SEBAGAI INOVASI PENGENDALIAN OPT RAMAH LINGKUNGAN. Journal of Multidisciplinary Science and Natural Resource Management , 1(3), 18–28. Diambil dari https://jurnalpasca.unram.ac.id/index.php/jom/article/view/1428

Abstrak

Teknologi RNA interference (RNAi) merupakan salah satu terobosan bioteknologi modern yang menawarkan pendekatan spesifik, efektif, dan ramah lingkungan dalam pengendalian Organisme Pengganggu Tanaman (OPT). Berbeda dengan pestisida kimia yang bersifat luas dan berdampak negatif terhadap lingkungan, pendekatan RNAi bekerja dengan menghambat ekspresi gen tertentu pada hama target tanpa memengaruhi organisme non-target. Artikel ini menyajikan kajian komprehensif berbasis literatur ilmiah mengenai mekanisme kerja RNAi, aplikasi teknologi RNAi dalam berbagai komoditas pertanian, efektivitasnya dalam menekan serangan OPT, serta tantangan dan peluang pengembangannya sebagai komponen penting dalam sistem pertanian berkelanjutan. Melalui analisis terhadap hasil-hasil penelitian sebelumnya, artikel ini menunjukkan bahwa RNAi berpotensi besar untuk menjadi teknologi utama dalam perlindungan tanaman masa depan.

Referensi

Arpaia, S., Christiaens, O., Giddings, K., Jones, H., Mezzetti, B., Moronta-barrios, F., Perry, J. N., Sweet, J. B., Taning, C. N. T., Smagghe, G., & Dietz-pfeilstetter, A. (2020). Biosafety of GM Crop Plants Expressing dsRNA : Data Requirements and EU Regulatory Considerations. 11(June), 1–13. https://doi.org/10.3389/fpls.2020.00940

Arpaia, S., Christiaens, O., Krogh, P. H., Kimberly, M., & Sweet, J. (2021). Environmental Safety Assessment of Plants Expressing RNAi for Pest Control. 117–130. https://doi.org/10.1079/9781789248890.0012

Baehaki, Iswanto, E. H., & Munawar, D. (2016). Resistensi Wereng Cokelat terhadap Insektisida yang Beredar di Sentra Produksi Padi Brown Planthopper Resistance to Insecticides Marketed in the. 99–108.

Bally, J., Mcintyre, G. J., Doran, R. L., Lee, K., Perez, A., Jung, H., Naim, F., Larrinua, I. M., Narva, K. E., & Waterhouse, P. M. (2016). In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts. 7(September), 1–9. https://doi.org/10.3389/fpls.2016.01453

Basso, M. F., David, D., Vásquez, N., Campos-pinto, E. R., Pinheiro, D. H., Cruz, B., Maktura, G. C., Guidelli, G. V., Marques-souza, H., & Grossi-de-sa, M. F. (2025). Progress and Opportunities of In Planta and Topical RNAi for the Biotechnological Control of Agricultural Pests. Figure 1.

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007a). Control of coleopteran insect pests through RNA interference. 25(11), 1322–1326. https://doi.org/10.1038/nbt1359

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007b). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322–1326. https://doi.org/10.1038/nbt1359

Bhoi, T. K., Samal, I., Majhi, P. K., Saini, V., Raj, M. N., & Ahmad, M. A. (2022). Insight into aphid mediated Potato Virus Y transmission : A molecular to bioinformatics prospective.

Bonnu, C. H. (2025). BAGI KETAHANAN PANGAN INDONESIA ( Sebuah Tinjauan Literatur ). 2045(105).

Burand, J. P., & Hunter, W. B. (2012). RNAi : Future in insect management. JOURNAL OF INVERTEBRATE PATHOLOGY, 1–7. https://doi.org/10.1016/j.jip.2012.07.012

Cagliari, D., Dias, N. P., Galdeano, D. M., Santos, E. Á. dos, Smagghe, G., & Zotti, M. J. (2019). Management of Pest Insects and Plant Diseases by Non- Transformative RNAi. 10(October). https://doi.org/10.3389/fpls.2019.01319

Carzoli, A. K., Aboobucker, S. I., Sandall, L. L., & Lübberstedt, T. T. (2018). Risks and opportunities of GM crops : Bt maize example. 19(August), 84–91. https://doi.org/10.1016/j.gfs.2018.10.004

Chen, C., Imran, M., Feng, X., Shen, X., & Sun, Z. (2025). Spray-induced gene silencing for crop protection : recent advances and emerging trends. February, 1–16. https://doi.org/10.3389/fpls.2025.1527944

Christiaens, O., Niu, J., & Taning, C. N. T. (2020). RNAi in Insects : A Revolution in Fundamental Research and Pest Control Applications. 1–6.

Christiaens, O., Whyard, S., Vélez, A. M., & Smagghe, G. (2020). Double-Stranded RNA Technology to Control Insect Pests : Current Status and Challenges. 11(April), 1–10. https://doi.org/10.3389/fpls.2020.00451

Dalakouras, A., Wassenegger, M., Dadami, E., & Ganopoulos, I. (2020). Genetically Modi fi ed Organism-Free RNA Interference : Exogenous Application of RNA Molecules in Plants 1 [ OPEN ]. 182(January), 38–50. https://doi.org/10.1104/pp.19.00570

FAO. (2022). The state of food security and nutrition in the world 2022: Repurposing food and agricultural policies to make healthy diets more affordable. Food & Agriculture Org.

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998a). letters to nature. 391(February), 806–811.

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998b). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. https://doi.org/10.1038/35888

Fletcher, S. J., Reeves, P. T., Hoang, B. T., & Mitter, N. (2020). A Perspective on RNAi-Based Biopesticides. 11(February), 1–10. https://doi.org/10.3389/fpls.2020.00051

Gebremichael, D. E., Haile, Z. M., Negrini, F., Sabbadini, S., Capriotti, L., Mezzetti, B., & Baraldi, E. (2021). RNA Interference Strategies for Future Management of Plant Pathogenic Fungi : Prospects and Challenges. 1–21.

Ghag, S. B. (2017). Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiological and Molecular Plant Pathology. https://doi.org/10.1016/j.pmpp.2017.10.003

Guan, R., Li, H., Fan, Y., Hu, S., Christiaens, O., Smagghe, G., & Miao, X. (2018). cro A nuclease specific to lepidopteran insects suppresses RNAi. 293, 6011–6021. https://doi.org/10.1074/jbc.RA117.001553

Hui, Z. H. U., & Huishan, G. U. O. (2012). The role of virus-derived small interfering RNAs in RNA silencing in plants. 55(2), 119–125. https://doi.org/10.1007/s11427-012-4281-3

Jain, R. G., Robinson, K., & Mitter, N. (2019). RNAi-Mediated Management of Whitefly Bemisia tabaci by Oral Delivery of Double-stranded RNAs †. 3390. https://doi.org/10.3390/proceedings2019036011

Joga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi Efficiency , Systemic Properties , and Novel Delivery Methods for Pest Insect Control : What We Know So Far. 7(November), 1–14. https://doi.org/10.3389/fphys.2016.00553

Kebede, M., & Fite, T. (2022). RNA interference ( RNAi ) applications to the management of fall armyworm , Spodoptera frugiperda ( Lepidoptera : Noctuidae ): Its current trends and future prospects. September, 1–16. https://doi.org/10.3389/fmolb.2022.944774

Koch, A., & Kogel, K. (2014). New wind in the sails : improving the agronomic value of crop plants through RNAi-mediated gene silencing. 1–11. https://doi.org/10.1111/pbi.12226

Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. (2013). Host-induced gene silencing of cytochrome P450 lanosterol C14 α -demethylase – encoding genes confers strong resistance to Fusarium species. 110(48), 19324–19329. https://doi.org/10.1073/pnas.1306373110

Kolliopoulou, A., Taning, C. N. T., Smagghe, G., & Swevers, L. (2017). Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease : Prospects and Challenges. 8(June), 1–24. https://doi.org/10.3389/fphys.2017.00399

Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. https://doi.org/10.21105/joss.01143

Kunte, N., Mcgraw, E., Bell, S., & Avila, L. (2019). Prospects , challenges and current status of RNAi through insect feeding. July. https://doi.org/10.1002/ps.5588

Li, N., Xu, X., Li, J., Hull, J. J., Chen, L., & Liang, G. (2024). A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. International Journal of Biological Macromolecules, 281(Pt 4), 136503. https://doi.org/10.1016/j.ijbiomac.2024.136503

Liu, S., Jaouannet, M., Dempsey, D. M. A., Imani, J., Coustau, C., & Kogel, K. (2019). Jo ur l P re of. Biotechnology Advances, 107463. https://doi.org/10.1016/j.biotechadv.2019.107463

Liu, X., Wang, S., Yu, Y., Cheng, Y., Hu, C., Zhou, M., Li, C., & Tang, B. (2022). Effects of Inhibiting the Expression of Chitin Synthase Gene SfCHSB on the Metabolism of Trehalose and Chitin in Spodoptera frugiperda Larvae.

Lundgren, J. G., & Duan, J. J. (2013). RNAi-Based Insecticidal Crops : Potential Effects on Nontarget Species. 63(8), 657–665. https://doi.org/10.1525/bio.2013.63.8.8

Mehlhorn, S., Hunnekuhl, V. S., Geibel, S., Nauen, R., & Bucher, G. (2021). Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control : a brief guide. Frontiers in Zoology, 1–16. https://doi.org/10.1186/s12983-021-00444-7

Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q. M., & Xu, Z. P. (2017). sustained protection against plant viruses. Nature Plants, 16207(January). https://doi.org/10.1038/nplants.2016.207

Pimentel, D., & Burgess, M. (2014). An Environmental, Energetic and Economic Comparison of Organic and Conventional Farming Systems. In D. Pimentel & R. Peshin (Eds.), Integrated Pest Management: Pesticide Problems, Vol.3 (pp. 141–166). Springer Netherlands. https://doi.org/10.1007/978-94-007-7796-5_6

Pitino, M., & Hogenhout, S. A. (2013). Aphid Protein Effectors Promote Aphid Colonization in a Plant Species-Specific Manner. 26(1), 130–139.

Pratt, A. J., & Macrae, I. J. (2010). The RNA-induced Silencing Complex : A Versatile Gene-silencing Machine *. 284(27), 17897–17901. https://doi.org/10.1074/jbc.R900012200

Rank, A. P., & Koch, A. (2021). Lab-to-Field Transition of RNA Spray Applications – How Far Are We ? 12(October). https://doi.org/10.3389/fpls.2021.755203

Romeis, J., & Widmer, F. (2020). Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. 11(June), 1–11. https://doi.org/10.3389/fpls.2020.00679

Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B., Smagghe, G., Yan, K., & Douglas, A. E. (2013). Towards the elements of successful insect RNAi. Journal of Insect Physiology, 59(12), 1212–1221. https://doi.org/10.1016/j.jinsphys.2013.08.014

Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. 6286(June). https://doi.org/10.1080/15476286.2016.1191728

Siddique, S., & Grundler, F. M. W. (2018). ScienceDirect Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology, 46, 102–108. https://doi.org/10.1016/j.mib.2018.09.004

Spada, M., Pugliesi, C., Fambrini, M., Palpacelli, D., Caneo, A., & Pecchia, S. (2025). Spray-Induced Gene Silencing ( SIGS ): Nanocarrier-Mediated dsRNA Delivery Improves RNAi Efficiency in the Management of Lettuce Gray Mold Caused by Botrytis cinerea. 1–20.

Sparks, T. C., & Nauen, R. (2014). management. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2014.11.014

Sun, H., Kalluri, A., Tang, D., Ding, J., Zhai, L., Gu, X., & Li, Y. (2023). Engineered dsRNA-protein nanoparticles for effective long-distance transport , delivery and gene silencing in plants.

Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J., Barthel, A., Collinge, D. P., Bebas, P., Bitra, K., Bravo, A., Crava, C. M., Maagd, R. A. De, Duvic, B., Erlandson, M., Faye, I., … Smagghe, G. (2011). RNA interference in Lepidoptera : An overview of successful and unsuccessful studies and implications for experimental design. 57, 231–245. https://doi.org/10.1016/j.jinsphys.2010.11.006

Tuhumury, G. N. C., Leatemia, J. A., & Hasinu, R. Y. R. J. V. (2012). PESTICIDE RESIDUE ON FRESH VEGETABLES IN AMBON CITY. 1(2), 99–105.

Ulum, M. B. (2021). REGULATING BIOSAFETY OF GENETICALLY MODIFIED CROPS IN INDONESIA : LIMITS AND CHALLENGES. 1(1), 157–177.

Upadhay, S. K., CHANDRASHEKAR, K., THAKUR, N., & VERMA, P. C. (2011). RNA interference for the control of whiteflies ( Bemisia tabaci ) by oral route. 36(March), 153–161. https://doi.org/10.1007/s12038-011-9009-1

Wang, Y., Yan, Q., Lan, C., Tang, T., Wang, K., Shen, J., & Niu, D. (2023). Nanoparticle carriers enhance RNA stability and uptake efficiency and prolong the protection against Rhizoctonia solani. Phytopathology Research, 1–11. https://doi.org/10.1186/s42483-023-00157-1

WHO. (2021). Managing pesticides in agriculture and public health A compendium of FAO and WHO guidelines and other resources.

Wilson, R., & Doudna, J. A. (2018). HHS Public Access. 217–239. https://doi.org/10.1146/annurev-biophys-083012-130404.Molecular

Xu, Q., Yu, Y., Li, W., Wang, X., Wu, X., Liu, Q., & Ren, Y. (2025). RNAi-Induced Disruption of Spodoptera frugiperda Life Cycle Using shRNA-Cell-Penetrating Poly(disulfide) Nanocarriers. Journal of Agricultural and Food Chemistry, 73. https://doi.org/10.1021/acs.jafc.5c04511

Yan, S., Ren, B., & Shen, J. (2021). Nanoparticle-mediated double-stranded RNA delivery system : a promising approach for sustainable pest management. https://doi.org/10.1111/1744-7917.12822.This

Zhu, K. Y., & Palli, S. R. (2020). Mechanisms , Applications , and Challenges of Insect RNA Interference. 293–311.

Zotti, M., Cagliari, D., Christiaens, O., Nji, C., Taning, T., Smagghe, G., Entomology, M., & Entomology, M. (2018). RNAi technology in crop protection against arthropod pests, pathogens and nematodes.

Biografi Penulis

Welmy Soumena, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia

Muhammad Sarjan, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia

Muhammad taufik Fauzi, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia

Pending Dadih Permana, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia

Lisensi

Hak Cipta (c) 2025 Welmy Soumena, Muhammad Sarjan, Muhammad taufik Fauzi, Pending Dadih Permana

Creative Commons License

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.