Fajar Era Pertanian Baru: Tinjauan Sistematis Internet of Things dalam Pendidikan Ilmu Pertanian
Diterbitkan:
2025-07-22Terbitan:
Vol 1 No 2 (2025): JOURNAL OF MULTIDISCIPLINARY SCIENCE AND NATURAL RESOURCE MANAGEMENT (ON PROGRESS)Kata Kunci:
Internet of Things (IoT), Agricultural Education, Precision Agriculture, Technology Adoption, Workforce Development.Artikel
Unduhan
Cara Mengutip
Abstrak
Internet of Things (IoT) mentransformasi pertanian secara mendalam, menciptakan kebutuhan mendesak untuk mengadaptasi kerangka kerja pendidikan guna mempersiapkan tenaga kerja yang siap menghadapi masa depan. Tinjauan sistematis ini bertujuan untuk mensintesiskan pengetahuan terkini tentang integrasi IoT ke dalam pendidikan sains pertanian, mengkaji dampak, tantangan, dan arah masa depannya. Mengikuti pedoman PRISMA, pencarian sistematis artikel yang diterbitkan antara tahun 2015 dan 2025 di basis data Scopus dilakukan. Dari 524 catatan awal, 18 studi dipilih untuk analisis tematik. Temuan utama mengungkapkan tiga tema sentral: (1) peran penting pendidikan tinggi dalam mengembangkan tenaga kerja terampil IoT melalui pembelajaran berbasis proyek dan pengalaman; (2) efektivitas perangkat pendidikan IoT yang bervariasi, yang sangat bergantung pada strategi pedagogis dan tingkat mahasiswa; dan (3) korelasi kuat antara tingkat pendidikan dan keberhasilan adopsi teknologi IoT di sektor pertanian. Kesimpulannya, meskipun mengintegrasikan IoT ke dalam pendidikan pertanian sangat penting, keberhasilannya bergantung pada implementasi yang baik secara pedagogis, bukan hanya penerapan teknologi. Disarankan agar para pembuat kebijakan mendukung modernisasi kurikulum dan para pendidik mengadopsi kerangka kerja pengajaran langsung. Penelitian di masa mendatang sebaiknya berfokus pada pengembangan kompetensi standar dan penilaian hasil karier jangka panjang dari program-program ini.
Referensi
Ahad, M. A., Paiva, S., Tripathi, G., & Feroz, N. (2020). Enabling technologies and sustainable smart cities. Sustainable Cities and Society, 61. https://doi.org/10.1016/J.SCS.2020.102301
Ahmed, A. A., Bellam, K., Yang, Y., & Preuss, M. (2022). Integrating IoT Technologies into the CS Curriculum at PVAMU: A Case Study. Education Sciences, 12(11). https://doi.org/10.3390/EDUCSCI12110840
Aliar, A. A. S., Yesudhasan, J., Alagarsamy, M., Anbalagan, K., Sakkarai, J., & Suriyan, K. (2022). A comprehensive analysis on IoT based smart farming solutions using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 11(3), 1550–1557. https://doi.org/10.11591/eei.v11i3.3310
Anjum, M., Kraiem, N., Min, H., Dutta, A. K., Daradkeh, Y. I., & Shahab, S. (2025). Big data-driven agriculture: a novel framework for resource management and sustainability. Cogent Food and Agriculture, 11(1). https://doi.org/10.1080/23311932.2025.2470249
Arhin, I., Li, X., Mei, H., Chen, X., Enyaah Arhin, E., Liu, A., & Li, X. (2024). Agricultural sustainability: exploring smallholder organic tea farmers’ adherence to sustainable agricultural practices. Cogent Food and Agriculture, 10(1). https://doi.org/10.1080/23311932.2024.2408848
Artık, N., Güçer, Y., & Poyrazoğlu, E. S. (2024). Impact of Climate Change on Agricultural Production and Food Security | İklim Değişikliğinin Tarımsal Üretim ve Gıda Arz Güvenliğine Etkisi. Akademik Gida, SI45–SI50. https://doi.org/10.24323/akademik-gida.1554438
Bampasidou, M., Goldgaber, D., Gentimis, T., & Mandalika, A. (2024). Overcoming ‘Digital Divides’: Leveraging higher education to develop next generation digital agriculture professionals. Computers and Electronics in Agriculture, 224. https://doi.org/10.1016/J.COMPAG.2024.109181
Baz, F. (2022). Developing and application to the fishing industry with the internet of thing (IoT). Journal of Survey in Fisheries Sciences, 9(1), 117–129. https://doi.org/10.18331/SFS2022.9.1.9
Dewi, C., & Chen, R.-C. (2020). Decision making based on IoT data collection for precision agriculture. In Studies in Computational Intelligence (Vol. 830). https://doi.org/10.1007/978-3-030-14132-5_3
Duguma, A. L., & Bai, X. (2025). How the internet of things technology improves agricultural efficiency. Artificial Intelligence Review, 58(2). https://doi.org/10.1007/s10462-024-11046-0
Dutta, M., Gupta, D., Tharewal, S., Goyal, D., Kaur Sandhu, J., Kaur, M., Ali Alzubi, A., & Mutared Alanazi, J. (2025). Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security. IEEE Access, 13, 34238–34268. https://doi.org/10.1109/ACCESS.2025.3540317
Hua, J., Wang, H., Kang, M., Wang, X., Guo, S., Chang, F., & Wang, F. Y. (2023). The design and implementation of a distributed agricultural service system for smallholder farmers in China. International Journal of Agricultural Sustainability, 21(1). https://doi.org/10.1080/14735903.2023.2221108
Kagan, C. R., Arnold, D. P., Cappelleri, D. J., Keske, C. M., & Turner, K. T. (2022). Special report: The Internet of Things for Precision Agriculture (IoT4Ag). Computers and Electronics in Agriculture, 196. https://doi.org/10.1016/J.COMPAG.2022.106742
Kalfas, D., Kalogiannidis, S., Papaevangelou, O., Melfou, K., & Chatzitheodoridis, F. (2024). Integration of Technology in Agricultural Practices towards Agricultural Sustainability: A Case Study of Greece. Sustainability (Switzerland) , 16(7). https://doi.org/10.3390/SU16072664
Kaur, J., Hazrati Fard, S. M., Amiri-Zarandi, M., & Dara, R. (2022). Protecting farmers’ data privacy and confidentiality: Recommendations and considerations. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.903230
Khan, N., & Babar, A. (2024). Innovations in precision agriculture and smart farming: Emerging technologies driving agricultural transformation. Innovation and Emerging Technologies, 11. https://doi.org/10.1142/S2737599424300046
Kondoyanni, M., Loukatos, D., Arvanitis, K. G., Lygkoura, K. A., Symeonaki, E., & Maraveas, C. (2024). Adding Machine-Learning Functionality to Real Equipment for Water Preservation: An Evaluation Case Study in Higher Education. Sustainability (Switzerland) , 16(8). https://doi.org/10.3390/SU16083261
Laha, S. R., Pattanayak, B. K., & Pattnaik, S. (2022). Advancement of Environmental Monitoring System Using IoT and Sensor: A Comprehensive Analysis. AIMS Environmental Science, 9(6), 771–800. https://doi.org/10.3934/ENVIRONSCI.2022044
Lin, Y. C., & Lin, Y. T. (2025). The Effectiveness of Developing Cloud-Based Agricultural Environmental Sensing System to Support Food and Agriculture Education in Elementary School. International Journal of Information and Education Technology, 15(1), 8–17. https://doi.org/10.18178/IJIET.2025.15.1.2213
Mahdi, M. S., Hassan, N. F., & Abdul-Majeed, G. H. (2021). An improved chacha algorithm for securing data on IoT devices. SN Applied Sciences, 3(4). https://doi.org/10.1007/S42452-021-04425-7
Maiti, A., Byrne, T., & Kist, A. A. (2019). Teaching internet of things in a collaborative laboratory environment. Proceedings of the 2019 5th Experiment at International Conference Exp at 2019, 193–198. https://doi.org/10.1109/EXPAT.2019.8876480
Medvedev, B., & Molodyakov, S. (2019). Internet of things for farmers: Educational issues. Engineering for Rural Development, 18, 1883–1887. https://doi.org/10.22616/ERDev2019.18.N058
Merwade, V., Rajib, A., Kim, I. L., Zhao, L., & Song, C. (2022). The Rise of Cyberinfrastructure for Environmental Applications. Resource Engineering and Technology for Sustainable World, 29(4), 33–35.
Mijailović, Ð., Ðorđdević, A., Stefanovic, M., Vidojević, D., Gazizulina, A., & Projović, D. (2021). A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/SU132212396
Mishra, H., & Mishra, D. (2024). AI for Data-Driven Decision-Making in Smart Agriculture: From Field to Farm Management. In Artificial Intelligence Techniques in Smart Agriculture. https://doi.org/10.1007/978-981-97-5878-4_11
Puppala, H., Peddinti, P. R. T., Tamvada, J. P., Ahuja, J., & Kim, B. (2023). Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India. Technology in Society, 74. https://doi.org/10.1016/j.techsoc.2023.102335
Quy, V. K., Thanh, B. T., Chehri, A., Linh, D. M., & Tuan, D. A. (2023). AI and Digital Transformation in Higher Education: Vision and Approach of a Specific University in Vietnam. Sustainability (Switzerland), 15(14). https://doi.org/10.3390/SU151411093
Raja Subramanian, R., Venkatesh, K., Manikumar, T., Raja Sudharsan, R., & Aravindrajan, V. (2024). SHAPE: Design and Evaluation of a Transformative Model for Engineering Education. Journal of Engineering Education Transformations, 38(Special Issue 1), 153–158. https://doi.org/10.16920/JEET/2024/V38IS1/24225
Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14. https://doi.org/10.1016/j.jafr.2023.100776
Rehman, A., Jabran, K., & Farooq, M. (2023). Curricula Transformations and Alternative Pedagogical Approaches for Sustainable Agriculture and Environment. International Journal of Agriculture and Biology, 30(4), 242–252. https://doi.org/10.17957/IJAB/15.2081
Sadiq, S. M., Ahmad, M. M., Karunakaran, N., & Atapattu, A. J. (2025). Advancing Global Food Security With Agriculture 4.0 and 5.0. In Advancing Global Food Security with Agriculture 4 0 and 5 0. https://doi.org/10.4018/979-8-3693-9964-4
Sashika, M. A. N., Gammanpila, H. W., & Priyadarshani, S. V. G. N. (2024). Exploring the evolving landscape: Urban horticulture cropping systems–trends and challenges. Scientia Horticulturae, 327. https://doi.org/10.1016/J.SCIENTA.2024.112870
Sawicka, B., Aslan, I., Bienia, B., Aslan, H., Pszczółkowski, P., Skiba, D., & Barbaś, P. (2025). Sustainable Smart Agriculture. In Eai Springer Innovations in Communication and Computing: Vol. Part F3967. https://doi.org/10.1007/978-3-031-69441-7_6
Sun, Z., Wang, Y., Zhang, L., & Guo, W. (2018). Design and realization of intelligent service system for monitoring and warning of meteorological disasters in facility agriculture in North China. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(23), 149–156. https://doi.org/10.11975/J.ISSN.1002-6819.2018.23.018
Yang, Q., Al Mamun, A., Masukujjaman, M., Makhbul, Z. K. M., & Zhong, X. (2024). Adoption of internet of things-enabled agricultural systems among Chinese agro-entreprises. Precision Agriculture, 25(5), 2477–2504. https://doi.org/10.1007/S11119-024-10182-5
Zuo, A., Wheeler, S. A., & Sun, H. (2021). Flying over the farm: understanding drone adoption by Australian irrigators. Precision Agriculture, 22(6), 1973–1991. https://doi.org/10.1007/S11119-021-09821-Y
Biografi Penulis
Nuratiqah Zainal, Master of Instructional Design and Technology in TVET, Universiti Tun Hussein Onn Malaysia, 86400 Johor Darul Ta'zim, Malaysia
Nuraqilla Waidha Bintang Grendis, Information Technology study program, Universitas Qamarul Huda Badaruddin Bagu, Central Lombok Regency, West Nusa Tenggara, Indonesia
Ahmad Syahrul Hadi San, Bachelor of Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Johor Darul Ta'zim, Malaysia.
Lisensi
Hak Cipta (c) 2025 Nuratiqah Zainal, Nuraqilla Waidha Bintang Grendis, Ahmad Syahrul Hadi San

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.



