RNA Interference (RNAi) Technology as an Environmentally Friendly Innovative Pest Control
Published:
2025-12-29Issue:
Vol. 1 No. 3 (2025): JOURNAL OF MULTIDISCIPLINARY SCIENCE AND NATURAL RESOURCE MANAGEMENTKeywords:
RNA interference (RNAi), bioteknologi, pengendalian OPT, gene silencing, tanaman transgenik, SIGS, pertanian berkelanjutanArticle
Downloads
How to Cite
Abstract
RNA interference (RNAi) technology is a breakthrough in modern biotechnology that offers a specific, effective, and environmentally friendly approach to controlling plant pests (OPT). Unlike chemical pesticides that are broad and have negative environmental impacts, the RNAi approach works by inhibiting the expression of specific genes in target pests without affecting non-target organisms. This article presents a comprehensive, literature-based review of the working mechanism of RNAi, the application of RNAi technology in various agricultural commodities, its effectiveness in suppressing pest attacks, and the challenges and opportunities for its development as an important component in sustainable agricultural systems. Through an analysis of previous research results, this article demonstrates that RNAi has great potential to become a key technology in future crop protection.
References
Arpaia, S., Christiaens, O., Giddings, K., Jones, H., Mezzetti, B., Moronta-barrios, F., Perry, J. N., Sweet, J. B., Taning, C. N. T., Smagghe, G., & Dietz-pfeilstetter, A. (2020). Biosafety of GM Crop Plants Expressing dsRNA : Data Requirements and EU Regulatory Considerations. 11(June), 1–13. https://doi.org/10.3389/fpls.2020.00940
Arpaia, S., Christiaens, O., Krogh, P. H., Kimberly, M., & Sweet, J. (2021). Environmental Safety Assessment of Plants Expressing RNAi for Pest Control. 117–130. https://doi.org/10.1079/9781789248890.0012
Baehaki, Iswanto, E. H., & Munawar, D. (2016). Resistensi Wereng Cokelat terhadap Insektisida yang Beredar di Sentra Produksi Padi Brown Planthopper Resistance to Insecticides Marketed in the. 99–108.
Bally, J., Mcintyre, G. J., Doran, R. L., Lee, K., Perez, A., Jung, H., Naim, F., Larrinua, I. M., Narva, K. E., & Waterhouse, P. M. (2016). In-Plant Protection against Helicoverpa armigera by Production of Long hpRNA in Chloroplasts. 7(September), 1–9. https://doi.org/10.3389/fpls.2016.01453
Basso, M. F., David, D., Vásquez, N., Campos-pinto, E. R., Pinheiro, D. H., Cruz, B., Maktura, G. C., Guidelli, G. V., Marques-souza, H., & Grossi-de-sa, M. F. (2025). Progress and Opportunities of In Planta and Topical RNAi for the Biotechnological Control of Agricultural Pests. Figure 1.
Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007a). Control of coleopteran insect pests through RNA interference. 25(11), 1322–1326. https://doi.org/10.1038/nbt1359
Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007b). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322–1326. https://doi.org/10.1038/nbt1359
Bhoi, T. K., Samal, I., Majhi, P. K., Saini, V., Raj, M. N., & Ahmad, M. A. (2022). Insight into aphid mediated Potato Virus Y transmission : A molecular to bioinformatics prospective.
Bonnu, C. H. (2025). BAGI KETAHANAN PANGAN INDONESIA ( Sebuah Tinjauan Literatur ). 2045(105).
Burand, J. P., & Hunter, W. B. (2012). RNAi : Future in insect management. JOURNAL OF INVERTEBRATE PATHOLOGY, 1–7. https://doi.org/10.1016/j.jip.2012.07.012
Cagliari, D., Dias, N. P., Galdeano, D. M., Santos, E. Á. dos, Smagghe, G., & Zotti, M. J. (2019). Management of Pest Insects and Plant Diseases by Non- Transformative RNAi. 10(October). https://doi.org/10.3389/fpls.2019.01319
Carzoli, A. K., Aboobucker, S. I., Sandall, L. L., & Lübberstedt, T. T. (2018). Risks and opportunities of GM crops : Bt maize example. 19(August), 84–91. https://doi.org/10.1016/j.gfs.2018.10.004
Chen, C., Imran, M., Feng, X., Shen, X., & Sun, Z. (2025). Spray-induced gene silencing for crop protection : recent advances and emerging trends. February, 1–16. https://doi.org/10.3389/fpls.2025.1527944
Christiaens, O., Niu, J., & Taning, C. N. T. (2020). RNAi in Insects : A Revolution in Fundamental Research and Pest Control Applications. 1–6.
Christiaens, O., Whyard, S., Vélez, A. M., & Smagghe, G. (2020). Double-Stranded RNA Technology to Control Insect Pests : Current Status and Challenges. 11(April), 1–10. https://doi.org/10.3389/fpls.2020.00451
Dalakouras, A., Wassenegger, M., Dadami, E., & Ganopoulos, I. (2020). Genetically Modi fi ed Organism-Free RNA Interference : Exogenous Application of RNA Molecules in Plants 1 [ OPEN ]. 182(January), 38–50. https://doi.org/10.1104/pp.19.00570
FAO. (2022). The state of food security and nutrition in the world 2022: Repurposing food and agricultural policies to make healthy diets more affordable. Food & Agriculture Org.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998a). letters to nature. 391(February), 806–811.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998b). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. https://doi.org/10.1038/35888
Fletcher, S. J., Reeves, P. T., Hoang, B. T., & Mitter, N. (2020). A Perspective on RNAi-Based Biopesticides. 11(February), 1–10. https://doi.org/10.3389/fpls.2020.00051
Gebremichael, D. E., Haile, Z. M., Negrini, F., Sabbadini, S., Capriotti, L., Mezzetti, B., & Baraldi, E. (2021). RNA Interference Strategies for Future Management of Plant Pathogenic Fungi : Prospects and Challenges. 1–21.
Ghag, S. B. (2017). Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiological and Molecular Plant Pathology. https://doi.org/10.1016/j.pmpp.2017.10.003
Guan, R., Li, H., Fan, Y., Hu, S., Christiaens, O., Smagghe, G., & Miao, X. (2018). cro A nuclease specific to lepidopteran insects suppresses RNAi. 293, 6011–6021. https://doi.org/10.1074/jbc.RA117.001553
Hui, Z. H. U., & Huishan, G. U. O. (2012). The role of virus-derived small interfering RNAs in RNA silencing in plants. 55(2), 119–125. https://doi.org/10.1007/s11427-012-4281-3
Jain, R. G., Robinson, K., & Mitter, N. (2019). RNAi-Mediated Management of Whitefly Bemisia tabaci by Oral Delivery of Double-stranded RNAs †. 3390. https://doi.org/10.3390/proceedings2019036011
Joga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi Efficiency , Systemic Properties , and Novel Delivery Methods for Pest Insect Control : What We Know So Far. 7(November), 1–14. https://doi.org/10.3389/fphys.2016.00553
Kebede, M., & Fite, T. (2022). RNA interference ( RNAi ) applications to the management of fall armyworm , Spodoptera frugiperda ( Lepidoptera : Noctuidae ): Its current trends and future prospects. September, 1–16. https://doi.org/10.3389/fmolb.2022.944774
Koch, A., & Kogel, K. (2014). New wind in the sails : improving the agronomic value of crop plants through RNAi-mediated gene silencing. 1–11. https://doi.org/10.1111/pbi.12226
Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. (2013). Host-induced gene silencing of cytochrome P450 lanosterol C14 α -demethylase – encoding genes confers strong resistance to Fusarium species. 110(48), 19324–19329. https://doi.org/10.1073/pnas.1306373110
Kolliopoulou, A., Taning, C. N. T., Smagghe, G., & Swevers, L. (2017). Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease : Prospects and Challenges. 8(June), 1–24. https://doi.org/10.3389/fphys.2017.00399
Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. https://doi.org/10.21105/joss.01143
Kunte, N., Mcgraw, E., Bell, S., & Avila, L. (2019). Prospects , challenges and current status of RNAi through insect feeding. July. https://doi.org/10.1002/ps.5588
Li, N., Xu, X., Li, J., Hull, J. J., Chen, L., & Liang, G. (2024). A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. International Journal of Biological Macromolecules, 281(Pt 4), 136503. https://doi.org/10.1016/j.ijbiomac.2024.136503
Liu, S., Jaouannet, M., Dempsey, D. M. A., Imani, J., Coustau, C., & Kogel, K. (2019). Jo ur l P re of. Biotechnology Advances, 107463. https://doi.org/10.1016/j.biotechadv.2019.107463
Liu, X., Wang, S., Yu, Y., Cheng, Y., Hu, C., Zhou, M., Li, C., & Tang, B. (2022). Effects of Inhibiting the Expression of Chitin Synthase Gene SfCHSB on the Metabolism of Trehalose and Chitin in Spodoptera frugiperda Larvae.
Lundgren, J. G., & Duan, J. J. (2013). RNAi-Based Insecticidal Crops : Potential Effects on Nontarget Species. 63(8), 657–665. https://doi.org/10.1525/bio.2013.63.8.8
Mehlhorn, S., Hunnekuhl, V. S., Geibel, S., Nauen, R., & Bucher, G. (2021). Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control : a brief guide. Frontiers in Zoology, 1–16. https://doi.org/10.1186/s12983-021-00444-7
Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q. M., & Xu, Z. P. (2017). sustained protection against plant viruses. Nature Plants, 16207(January). https://doi.org/10.1038/nplants.2016.207
Pimentel, D., & Burgess, M. (2014). An Environmental, Energetic and Economic Comparison of Organic and Conventional Farming Systems. In D. Pimentel & R. Peshin (Eds.), Integrated Pest Management: Pesticide Problems, Vol.3 (pp. 141–166). Springer Netherlands. https://doi.org/10.1007/978-94-007-7796-5_6
Pitino, M., & Hogenhout, S. A. (2013). Aphid Protein Effectors Promote Aphid Colonization in a Plant Species-Specific Manner. 26(1), 130–139.
Pratt, A. J., & Macrae, I. J. (2010). The RNA-induced Silencing Complex : A Versatile Gene-silencing Machine *. 284(27), 17897–17901. https://doi.org/10.1074/jbc.R900012200
Rank, A. P., & Koch, A. (2021). Lab-to-Field Transition of RNA Spray Applications – How Far Are We ? 12(October). https://doi.org/10.3389/fpls.2021.755203
Romeis, J., & Widmer, F. (2020). Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. 11(June), 1–11. https://doi.org/10.3389/fpls.2020.00679
Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B., Smagghe, G., Yan, K., & Douglas, A. E. (2013). Towards the elements of successful insect RNAi. Journal of Insect Physiology, 59(12), 1212–1221. https://doi.org/10.1016/j.jinsphys.2013.08.014
Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. 6286(June). https://doi.org/10.1080/15476286.2016.1191728
Siddique, S., & Grundler, F. M. W. (2018). ScienceDirect Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology, 46, 102–108. https://doi.org/10.1016/j.mib.2018.09.004
Spada, M., Pugliesi, C., Fambrini, M., Palpacelli, D., Caneo, A., & Pecchia, S. (2025). Spray-Induced Gene Silencing ( SIGS ): Nanocarrier-Mediated dsRNA Delivery Improves RNAi Efficiency in the Management of Lettuce Gray Mold Caused by Botrytis cinerea. 1–20.
Sparks, T. C., & Nauen, R. (2014). management. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2014.11.014
Sun, H., Kalluri, A., Tang, D., Ding, J., Zhai, L., Gu, X., & Li, Y. (2023). Engineered dsRNA-protein nanoparticles for effective long-distance transport , delivery and gene silencing in plants.
Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J., Barthel, A., Collinge, D. P., Bebas, P., Bitra, K., Bravo, A., Crava, C. M., Maagd, R. A. De, Duvic, B., Erlandson, M., Faye, I., … Smagghe, G. (2011). RNA interference in Lepidoptera : An overview of successful and unsuccessful studies and implications for experimental design. 57, 231–245. https://doi.org/10.1016/j.jinsphys.2010.11.006
Tuhumury, G. N. C., Leatemia, J. A., & Hasinu, R. Y. R. J. V. (2012). PESTICIDE RESIDUE ON FRESH VEGETABLES IN AMBON CITY. 1(2), 99–105.
Ulum, M. B. (2021). REGULATING BIOSAFETY OF GENETICALLY MODIFIED CROPS IN INDONESIA : LIMITS AND CHALLENGES. 1(1), 157–177.
Upadhay, S. K., CHANDRASHEKAR, K., THAKUR, N., & VERMA, P. C. (2011). RNA interference for the control of whiteflies ( Bemisia tabaci ) by oral route. 36(March), 153–161. https://doi.org/10.1007/s12038-011-9009-1
Wang, Y., Yan, Q., Lan, C., Tang, T., Wang, K., Shen, J., & Niu, D. (2023). Nanoparticle carriers enhance RNA stability and uptake efficiency and prolong the protection against Rhizoctonia solani. Phytopathology Research, 1–11. https://doi.org/10.1186/s42483-023-00157-1
WHO. (2021). Managing pesticides in agriculture and public health A compendium of FAO and WHO guidelines and other resources.
Wilson, R., & Doudna, J. A. (2018). HHS Public Access. 217–239. https://doi.org/10.1146/annurev-biophys-083012-130404.Molecular
Xu, Q., Yu, Y., Li, W., Wang, X., Wu, X., Liu, Q., & Ren, Y. (2025). RNAi-Induced Disruption of Spodoptera frugiperda Life Cycle Using shRNA-Cell-Penetrating Poly(disulfide) Nanocarriers. Journal of Agricultural and Food Chemistry, 73. https://doi.org/10.1021/acs.jafc.5c04511
Yan, S., Ren, B., & Shen, J. (2021). Nanoparticle-mediated double-stranded RNA delivery system : a promising approach for sustainable pest management. https://doi.org/10.1111/1744-7917.12822.This
Zhu, K. Y., & Palli, S. R. (2020). Mechanisms , Applications , and Challenges of Insect RNA Interference. 293–311.
Zotti, M., Cagliari, D., Christiaens, O., Nji, C., Taning, T., Smagghe, G., Entomology, M., & Entomology, M. (2018). RNAi technology in crop protection against arthropod pests, pathogens and nematodes.
Author Biographies
Welmy Soumena, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia
Muhammad Sarjan, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia
Muhammad taufik Fauzi, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia
Pending Dadih Permana, Program Studi Magister Pertanian Lahan Kering, Pascasarjana Universitas Mataram, Kota Mataram, Nusa Tenggara Barat 83115, Indonesia
License
Copyright (c) 2025 Welmy Soumena, Muhammad Sarjan, Muhammad taufik Fauzi, Pending Dadih Permana

This work is licensed under a Creative Commons Attribution 4.0 International License.



