The Dawn of a New Agricultural Era: A Systematic Review of the Internet of Things in Agricultural Science Education

Authors

Nuratiqah Zainal , Nuraqilla Waidha Bintang Grendis , Ahmad Syahrul Hadi San

Published:

2025-07-22

Issue:

Vol. 1 No. 2 (2025): July (On Progress)

Keywords:

Internet of Things (IoT), Agricultural Education, Precision Agriculture, Technology Adoption, Workforce Development.

Article

Downloads

How to Cite

Zainal, N., Grendis, N. W. B., & San, A. S. H. (2025). The Dawn of a New Agricultural Era: A Systematic Review of the Internet of Things in Agricultural Science Education. Journal of Multidisciplinary Science and Natural Resource Management , 1(2), 8–16. Retrieved from https://jurnalpasca.unram.ac.id/index.php/jom/article/view/1114

Abstract

The Internet of Things (IoT) is profoundly transforming agriculture, creating an urgent need to adapt educational frameworks to prepare a future-ready workforce. This systematic review aims to synthesize the current state of knowledge on the integration of IoT into agricultural science education, examining its impacts, challenges, and future directions. Following PRISMA guidelines, a systematic search of the Scopus database for articles published between 2015 and 2025 was performed. From an initial 524 records, 18 studies were selected for thematic analysis. The key findings reveal three central themes: (1) the critical role of higher education in developing an IoT-skilled workforce through experiential, project-based learning; (2) the variable effectiveness of IoT educational tools, which is highly dependent on pedagogical strategy and student level; and (3) the strong correlation between education levels and the successful adoption of IoT technologies in the agricultural sector. In conclusion, while integrating IoT into agricultural education is essential, its success hinges on pedagogically sound implementation, not just technology deployment. It is recommended that policymakers support curriculum modernization and that educators adopt hands-on teaching frameworks. Future research should focus on developing standardized competencies and assessing the long-term career outcomes of these programs.

References

Ahad, M. A., Paiva, S., Tripathi, G., & Feroz, N. (2020). Enabling technologies and sustainable smart cities. Sustainable Cities and Society, 61. https://doi.org/10.1016/J.SCS.2020.102301

Ahmed, A. A., Bellam, K., Yang, Y., & Preuss, M. (2022). Integrating IoT Technologies into the CS Curriculum at PVAMU: A Case Study. Education Sciences, 12(11). https://doi.org/10.3390/EDUCSCI12110840

Aliar, A. A. S., Yesudhasan, J., Alagarsamy, M., Anbalagan, K., Sakkarai, J., & Suriyan, K. (2022). A comprehensive analysis on IoT based smart farming solutions using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 11(3), 1550–1557. https://doi.org/10.11591/eei.v11i3.3310

Anjum, M., Kraiem, N., Min, H., Dutta, A. K., Daradkeh, Y. I., & Shahab, S. (2025). Big data-driven agriculture: a novel framework for resource management and sustainability. Cogent Food and Agriculture, 11(1). https://doi.org/10.1080/23311932.2025.2470249

Arhin, I., Li, X., Mei, H., Chen, X., Enyaah Arhin, E., Liu, A., & Li, X. (2024). Agricultural sustainability: exploring smallholder organic tea farmers’ adherence to sustainable agricultural practices. Cogent Food and Agriculture, 10(1). https://doi.org/10.1080/23311932.2024.2408848

Artık, N., Güçer, Y., & Poyrazoğlu, E. S. (2024). Impact of Climate Change on Agricultural Production and Food Security | İklim Değişikliğinin Tarımsal Üretim ve Gıda Arz Güvenliğine Etkisi. Akademik Gida, SI45–SI50. https://doi.org/10.24323/akademik-gida.1554438

Bampasidou, M., Goldgaber, D., Gentimis, T., & Mandalika, A. (2024). Overcoming ‘Digital Divides’: Leveraging higher education to develop next generation digital agriculture professionals. Computers and Electronics in Agriculture, 224. https://doi.org/10.1016/J.COMPAG.2024.109181

Baz, F. (2022). Developing and application to the fishing industry with the internet of thing (IoT). Journal of Survey in Fisheries Sciences, 9(1), 117–129. https://doi.org/10.18331/SFS2022.9.1.9

Dewi, C., & Chen, R.-C. (2020). Decision making based on IoT data collection for precision agriculture. In Studies in Computational Intelligence (Vol. 830). https://doi.org/10.1007/978-3-030-14132-5_3

Duguma, A. L., & Bai, X. (2025). How the internet of things technology improves agricultural efficiency. Artificial Intelligence Review, 58(2). https://doi.org/10.1007/s10462-024-11046-0

Dutta, M., Gupta, D., Tharewal, S., Goyal, D., Kaur Sandhu, J., Kaur, M., Ali Alzubi, A., & Mutared Alanazi, J. (2025). Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security. IEEE Access, 13, 34238–34268. https://doi.org/10.1109/ACCESS.2025.3540317

Hua, J., Wang, H., Kang, M., Wang, X., Guo, S., Chang, F., & Wang, F. Y. (2023). The design and implementation of a distributed agricultural service system for smallholder farmers in China. International Journal of Agricultural Sustainability, 21(1). https://doi.org/10.1080/14735903.2023.2221108

Kagan, C. R., Arnold, D. P., Cappelleri, D. J., Keske, C. M., & Turner, K. T. (2022). Special report: The Internet of Things for Precision Agriculture (IoT4Ag). Computers and Electronics in Agriculture, 196. https://doi.org/10.1016/J.COMPAG.2022.106742

Kalfas, D., Kalogiannidis, S., Papaevangelou, O., Melfou, K., & Chatzitheodoridis, F. (2024). Integration of Technology in Agricultural Practices towards Agricultural Sustainability: A Case Study of Greece. Sustainability (Switzerland) , 16(7). https://doi.org/10.3390/SU16072664

Kaur, J., Hazrati Fard, S. M., Amiri-Zarandi, M., & Dara, R. (2022). Protecting farmers’ data privacy and confidentiality: Recommendations and considerations. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.903230

Khan, N., & Babar, A. (2024). Innovations in precision agriculture and smart farming: Emerging technologies driving agricultural transformation. Innovation and Emerging Technologies, 11. https://doi.org/10.1142/S2737599424300046

Kondoyanni, M., Loukatos, D., Arvanitis, K. G., Lygkoura, K. A., Symeonaki, E., & Maraveas, C. (2024). Adding Machine-Learning Functionality to Real Equipment for Water Preservation: An Evaluation Case Study in Higher Education. Sustainability (Switzerland) , 16(8). https://doi.org/10.3390/SU16083261

Laha, S. R., Pattanayak, B. K., & Pattnaik, S. (2022). Advancement of Environmental Monitoring System Using IoT and Sensor: A Comprehensive Analysis. AIMS Environmental Science, 9(6), 771–800. https://doi.org/10.3934/ENVIRONSCI.2022044

Lin, Y. C., & Lin, Y. T. (2025). The Effectiveness of Developing Cloud-Based Agricultural Environmental Sensing System to Support Food and Agriculture Education in Elementary School. International Journal of Information and Education Technology, 15(1), 8–17. https://doi.org/10.18178/IJIET.2025.15.1.2213

Mahdi, M. S., Hassan, N. F., & Abdul-Majeed, G. H. (2021). An improved chacha algorithm for securing data on IoT devices. SN Applied Sciences, 3(4). https://doi.org/10.1007/S42452-021-04425-7

Maiti, A., Byrne, T., & Kist, A. A. (2019). Teaching internet of things in a collaborative laboratory environment. Proceedings of the 2019 5th Experiment at International Conference Exp at 2019, 193–198. https://doi.org/10.1109/EXPAT.2019.8876480

Medvedev, B., & Molodyakov, S. (2019). Internet of things for farmers: Educational issues. Engineering for Rural Development, 18, 1883–1887. https://doi.org/10.22616/ERDev2019.18.N058

Merwade, V., Rajib, A., Kim, I. L., Zhao, L., & Song, C. (2022). The Rise of Cyberinfrastructure for Environmental Applications. Resource Engineering and Technology for Sustainable World, 29(4), 33–35.

Mijailović, Ð., Ðorđdević, A., Stefanovic, M., Vidojević, D., Gazizulina, A., & Projović, D. (2021). A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/SU132212396

Mishra, H., & Mishra, D. (2024). AI for Data-Driven Decision-Making in Smart Agriculture: From Field to Farm Management. In Artificial Intelligence Techniques in Smart Agriculture. https://doi.org/10.1007/978-981-97-5878-4_11

Puppala, H., Peddinti, P. R. T., Tamvada, J. P., Ahuja, J., & Kim, B. (2023). Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India. Technology in Society, 74. https://doi.org/10.1016/j.techsoc.2023.102335

Quy, V. K., Thanh, B. T., Chehri, A., Linh, D. M., & Tuan, D. A. (2023). AI and Digital Transformation in Higher Education: Vision and Approach of a Specific University in Vietnam. Sustainability (Switzerland), 15(14). https://doi.org/10.3390/SU151411093

Raja Subramanian, R., Venkatesh, K., Manikumar, T., Raja Sudharsan, R., & Aravindrajan, V. (2024). SHAPE: Design and Evaluation of a Transformative Model for Engineering Education. Journal of Engineering Education Transformations, 38(Special Issue 1), 153–158. https://doi.org/10.16920/JEET/2024/V38IS1/24225

Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14. https://doi.org/10.1016/j.jafr.2023.100776

Rehman, A., Jabran, K., & Farooq, M. (2023). Curricula Transformations and Alternative Pedagogical Approaches for Sustainable Agriculture and Environment. International Journal of Agriculture and Biology, 30(4), 242–252. https://doi.org/10.17957/IJAB/15.2081

Sadiq, S. M., Ahmad, M. M., Karunakaran, N., & Atapattu, A. J. (2025). Advancing Global Food Security With Agriculture 4.0 and 5.0. In Advancing Global Food Security with Agriculture 4 0 and 5 0. https://doi.org/10.4018/979-8-3693-9964-4

Sashika, M. A. N., Gammanpila, H. W., & Priyadarshani, S. V. G. N. (2024). Exploring the evolving landscape: Urban horticulture cropping systems–trends and challenges. Scientia Horticulturae, 327. https://doi.org/10.1016/J.SCIENTA.2024.112870

Sawicka, B., Aslan, I., Bienia, B., Aslan, H., Pszczółkowski, P., Skiba, D., & Barbaś, P. (2025). Sustainable Smart Agriculture. In Eai Springer Innovations in Communication and Computing: Vol. Part F3967. https://doi.org/10.1007/978-3-031-69441-7_6

Sun, Z., Wang, Y., Zhang, L., & Guo, W. (2018). Design and realization of intelligent service system for monitoring and warning of meteorological disasters in facility agriculture in North China. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(23), 149–156. https://doi.org/10.11975/J.ISSN.1002-6819.2018.23.018

Yang, Q., Al Mamun, A., Masukujjaman, M., Makhbul, Z. K. M., & Zhong, X. (2024). Adoption of internet of things-enabled agricultural systems among Chinese agro-entreprises. Precision Agriculture, 25(5), 2477–2504. https://doi.org/10.1007/S11119-024-10182-5

Zuo, A., Wheeler, S. A., & Sun, H. (2021). Flying over the farm: understanding drone adoption by Australian irrigators. Precision Agriculture, 22(6), 1973–1991. https://doi.org/10.1007/S11119-021-09821-Y

Author Biographies

Nuratiqah Zainal, Master of Instructional Design and Technology in TVET, Universiti Tun Hussein Onn Malaysia, 86400 Johor Darul Ta'zim, Malaysia

Nuraqilla Waidha Bintang Grendis, Information Technology study program, Universitas Qamarul Huda Badaruddin Bagu, Central Lombok Regency, West Nusa Tenggara, Indonesia

Ahmad Syahrul Hadi San, Bachelor of Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Johor Darul Ta'zim, Malaysia.

License

Copyright (c) 2025 Nuratiqah Zainal, Nuraqilla Waidha Bintang Grendis, Ahmad Syahrul Hadi San

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.