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Abstract — Teaching computational physics and developing programming skills remains a significant challenge for many 

undergraduate programs worldwide. This study presents an innovative approach implemented at the University of Mataram, 

Indonesia, to optimize Pascal programming instruction for physics students. Various artificial intelligence (AI) techniques were 

utilized to assist students in developing more complex programs. This enabled the generation of customized lesson plans with 

interactive tutorials, coding exercises, and simulations tailored to each student's needs. Throughout the semester, the system 

continuously monitored student progress and adjusted instructional materials accordingly. The analysis of Mann-Whitney test 

results for Computational Physics scores among Classes A, B, and C revealed no statistically significant differences between the 

groups, with median scores consistently at 80 and p-values exceeding 0.05. However, an examination of the theoretical section of 

the final examination showed an overall improvement in average scores compared to the previous year, with Class A achieving the 

highest mean score of 84%. Additionally, the practical programming section demonstrated increased pass rates across all three 

classes, with Class B achieving the highest pass rate at 92%, followed by Class A at 88% and Class C at 82%. Student feedback 

indicated high levels of satisfaction with the approach, citing increased engagement and motivation. The study highlights the 

potential of leveraging AI techniques in generating personalized programming examples for computational physics education, 

enhancing comprehension of theoretical concepts, and facilitating the development of practical programming skills. 
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——————————      —————————— 

 

1. Introduction 
The integration of computational methods and programming skills has become increasingly crucial in physics education, 

equipping students with the ability to simulate and solve complex problems [1]. However, many universities face challenges in 

effectively teaching programming languages and engaging students in applying these skills to physics applications [2]. At the 

University of Mataram, Indonesia, the physics department within the Faculty of Teacher Training and Education (FKIP) has 

recognized the need to enhance their undergraduate programming curriculum, particularly in the teaching of Pascal. 

Despite its widespread use in introductory programming courses, Pascal is often perceived as outdated and unintuitive by 

students, leading to difficulties in understanding fundamental programming concepts and their applications in physics [3]. To 

address this challenge, the department has implemented an innovative artificial intelligence (AI)-driven approach to optimize the 

instruction of Pascal programming for their students. 

This initiative leverages advances in machine learning and AI to generate accurate and relevant programming examples 

tailored to the needs of computational physics students. By providing personalized and engaging learning experiences, the 

approach aims to enhance students' comprehension of programming concepts, improve their coding proficiency, and foster their 

ability to apply these skills in solving physics problems [4]. 

 

2. Methodology 
The study was conducted over the course of a 16-week computational physics course, which covered both theoretical concepts 

and practical programming examples in Pascal. The course was divided into three classes: A, B, and C. This approach aligns with 

the recommendation to incorporate active learning strategies, such as programming exercises, to enhance students' engagement 

and understanding in physics courses [5]. 
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In the initial phase, various AI models were employed to generate a diverse set of Pascal programs, ranging from simple to 

complex. These programs were then evaluated using an online Pascal compiler (gdb) to assess their accuracy and identify 

potential errors. The programs with the highest accuracy and minimal errors were selected for integration into the course 

curriculum. This strategy leverages the capabilities of AI in generating accurate and error-free programming examples, which has 

been shown to be effective in improving students' programming skills [6]. 

During the lectures, students were introduced to the theoretical foundations of computational physics and provided with the 

AI-generated Pascal programs as practical examples. These programs served as a starting point for students to develop their 

understanding of programming concepts and their applications in solving physics problems, aligning with the recommendation to 

provide relevant and contextual examples to support students' learning in computer programming [7]. 

Throughout the course, students were tasked with modifying and enhancing the provided programs, gradually increasing the 

complexity of their coding assignments. This hands-on approach allowed students to apply their theoretical knowledge and 

programming skills in a practical setting, fostering a deeper understanding of the subject matter [8]. 

To evaluate the effectiveness of the AI-driven program generation approach, students' performance was assessed through a 

comprehensive final examination at the end of the semester. The examination consisted of two components: a theoretical section 

assessing their understanding of computational physics concepts, and a practical programming section evaluating their ability to 

write, modify, and debug Pascal programs. This comprehensive assessment approach is consistent with best practices in 

evaluating students' computational thinking and programming skills [9]. 

 

3. Results and Discussion 

The analysis of the final grades obtained by students in each of the three classes (A, B, and C) is on table 1.  

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

Class A 31 0 78.06 1.37 7.6 60 75 80 85 85

Class B 26 0 79.04 1.04 5.3 65 75 80 85 85

Class C 20 0 77.25 1.12 4.99 65 72.5 80 80 80

Table 1. Descriptive Statistics: Class A, Class B, 

 
 

The statistical analysis of Classes A, B, and C reveals distinct characteristics and variability within each group. Class A, 

comprising 31 observations, exhibits a mean score of 78.06 with a standard error of 1.37 and a standard deviation of 7.60. The 

range of scores in Class A spans from a minimum of 60.00 to a maximum of 85.00, with the first quartile (Q1) at 75.00, the 

median at 80.00, and the third quartile (Q3) at 85.00. This indicates a relatively broad distribution with significant variability. 

Class B, consisting of 26 observations, shows a slightly higher mean score of 79.04, with a lower standard error of 1.04 and a 

standard deviation of 5.30, suggesting more consistency in the scores compared to Class A. The scores for Class B range from 

65.00 to 85.00, with Q1 also at 75.00, the median at 80.00, and Q3 at 85.00, indicating a distribution similar to Class A but with 

less variability. 

Class C, with 20 observations, has a mean score of 77.25, a standard error of 1.12, and the lowest standard deviation among 

the three classes at 4.99. The scores for Class C range from 65.00 to 80.00, with Q1 at 72.50, the median at 80.00, and Q3 at 

80.00. This suggests a narrower distribution with less variability, and a slightly lower overall mean compared to Classes A and B. 

While Classes A and B exhibit similar median scores and interquartile ranges, Class C shows a slightly lower mean and 

reduced variability. The differences in standard deviations highlight the varying degrees of consistency within each class, with 

Class C being the most consistent and Class A the least. These insights provide a comprehensive understanding of the 

distributional characteristics and variability within each class, essential for informed decision-making and further analysis. 

The histogram data of the final scores for computational physics in Classes A, B, and C are presented in Figure 1. 

Subsequently, the normality was assessed using the Kolmogorov-Smirnov test, with the results presented in Table 2. 

 

 
 

 

Fig. 1. Summary for Class A, B and C 

 

The Kolmogorov-Smirnov normality test results for Classes A, B, and C demonstrate that none of these classes' data sets 

follow a normal distribution. Specifically, the p-values for all classes (A: < 0.010, B: < 0.027, C: < 0.010) are below the typical 

significance level of 0.05, leading to the rejection of the null hypothesis that the data are normally distributed. The KS statistics 

for the classes (A: 0.310, B: 0.187, C: 0.459) indicate substantial deviations from a normal distribution. Therefore, any further 
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analysis involving these data sets should employ non-parametric methods, which do not assume normality. This ensures the 

accuracy and validity of the statistical inferences drawn from the data. 

Table 2. The Kolmogorov-Smirnov analysis  for Classes A, B, and C: 

Class Mean StDev Sample size (N) KS Statistic P-Value  

A 78.06 7.602 31 0.310 <0.010  
B 79.04 5.925 26 0.187 <0.027  
C  77.25 4.993 20 0.459 <0.010  

 

The final score distributions for computational physics in Classes A, B, and C are illustrated in Figure 1. The normality of 

these distributions was evaluated using the Kolmogorov-Smirnov test, with the findings detailed in Table 2. To compare the 

differences among Classes A, B, and C, the non-parametric Mann-Whitney test was employed, and the results are summarized in 

Table 3. 

Table 3. Mann-Whitney Test over Class A, B, and C 

Table 3. Mann-Whitney Test over Class A, B, and C

Class A Sample Median

Class B 31 80

Class C 26 80

Achieved Confidence 20 80

W-Value (Not adjusted) 95.03% 95.20% 95.01%

P-Value (Not adjusted) 902 862 654.5

W-Value (Adjusted) 0.968 0.284 0.341

P-Value (Adjusted) 902 862 654.5

0.967 0.239 0.305  
 

Based on the Mann-Whitney test results for Computational Physics scores among classes A, B, and C, no statistically 

significant differences were found between the groups. In the comparison between Class A and Class B, both classes had a median 

score of 80. The confidence interval for the difference in medians was between -5 and 5, and the p-values (both adjusted and 

unadjusted for ties) were well above the conventional significance level of 0.05. This indicates that there is insufficient evidence 

to reject the null hypothesis, suggesting that the median scores of Class A and Class B are statistically indistinguishable. 

Similarly, when comparing Class A and Class C, the median scores for both classes remained at 80. The confidence interval 

for the difference in medians ranged from -0.0000000 to 5, and the p-values (0.284 and 0.239 for unadjusted and adjusted, 

respectively) were again higher than 0.05. This result reinforces the conclusion that there is no significant statistical difference 

between the median scores of Class A and Class C, leading to the acceptance of the null hypothesis for this comparison as well. 

Finally, the comparison between Class B and Class C also showed no significant difference in median scores, both being 80. 

The confidence interval for the difference spanned from 0 to 5, and the p-values (0.341 and 0.305 for unadjusted and adjusted, 

respectively) exceeded the 0.05 threshold. Consequently, there is no substantial evidence to suggest a difference in median scores 

between Class B and Class C. Overall, these results indicate that the median Computational Physics scores for classes A, B, and C 

are statistically similar, demonstrating no significant differences among the groups. 

In the theoretical section of the final examination, the average scores across all three classes were higher than the previous 

year, with Class A achieving the highest mean score of 84%. This result suggests that the AI-generated programming examples 

enhanced students' understanding of computational physics concepts by providing relevant and contextual illustrations. 

Furthermore, the practical programming section of the final examination demonstrated a notable increase in pass rates across 

all three classes. Class B exhibited the highest pass rate at 92%, followed by Class A at 88% and Class C at 82%. These findings 

indicate that the AI-generated programs effectively supported students in developing their coding skills and applying them to 

solve physics-related programming tasks. Student feedback collected through surveys and interviews revealed a high level of 

satisfaction with the AI-driven approach. Many students reported feeling more engaged and motivated throughout the course, 

attributing their improved performance to the clarity and relevance of the AI-generated programming examples. However, some 

students also expressed a need for additional support in understanding complex programming concepts and suggested 

incorporating more interactive elements into the learning materials. 

The results of this study highlight the potential of leveraging AI in generating programming examples for computational 

physics education. By providing accurate and relevant examples tailored to the needs of students, the AI-driven approach 

effectively enhanced their comprehension of theoretical concepts and facilitated the development of practical programming skills 

[10]. The improvement in students' performance, particularly in the practical programming section of the final examination, 

suggests that the AI-generated examples effectively bridged the gap between theory and practice. By allowing students to engage 

with contextualized coding examples and incrementally increase the complexity of their assignments, the course fostered a deeper 

understanding of programming concepts and their applications in physics [11]. 

Furthermore, the positive student feedback reinforces the notion that AI-driven personalized and adaptive learning experiences 

can enhance engagement and motivation, key factors in effective learning [12]. However, the need for additional support and 
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interactive elements expressed by some students highlights the importance of continuously refining and improving the learning 

materials to meet diverse student needs. 

 

4. Conclusion 
The analysis of the Mann-Whitney test results for Computational Physics scores among Classes A, B, and C revealed no 

statistically significant differences between the groups. In all comparisons (Class A vs. Class B, Class A vs. Class C, and Class B 

vs. Class C), the median scores for each class were consistently 80, and the p-values exceeded the conventional significance level 

of 0.05. Consequently, there is insufficient evidence to reject the null hypothesis, indicating that the median scores of the three 

classes are statistically indistinguishable. Further analysis of the theoretical section of the final examination showed an overall 

improvement in average scores compared to the previous year, with Class A achieving the highest mean score of 84%. This 

improvement suggests that AI-generated programming examples effectively enhanced students' understanding of computational 

physics concepts. 

The practical programming section also demonstrated increased pass rates across all three classes, with Class B achieving the 

highest pass rate at 92%, followed by Class A at 88% and Class C at 82%. These findings indicate that the AI-generated programs 

successfully supported students in developing and applying their coding skills to physics-related tasks. Student feedback through 

surveys and interviews indicated high levels of satisfaction with the AI-driven approach. Students reported increased engagement 

and motivation, attributing their improved performance to the clarity and relevance of the AI-generated programming examples. 

However, some students expressed the need for additional support in understanding complex programming concepts and 

suggested incorporating more interactive elements into the learning materials. 

Overall, this study highlights the potential of leveraging AI in generating programming examples for computational physics 

education. The AI-driven approach not only enhanced students' comprehension of theoretical concepts but also facilitated the 

development of practical programming skills. The improvement in students' performance, particularly in the practical 

programming section, suggests that the AI-generated examples effectively bridged the gap between theory and practice. Positive 

student feedback further reinforces the potential of AI-driven personalized and adaptive learning experiences to enhance 

engagement and motivation, which are crucial for effective learning. However, the expressed need for additional support and 

interactive elements underscores the importance of continuously refining and improving the learning materials to meet diverse 

student needs. 
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